
PREPRINT VERSION OF A 2025 NEURO INSPIRED COMPUTATIONAL ELEMENTS CONFERENCE (NICE) PROCEEDINGS PAPER
FINAL VERSION AVAILABLE AT https://ieeexplore.ieee.org/

Threshold Adaptation in Spiking Networks Enables
Shortest Path Finding and Place Disambiguation

Robin Dietrich1,2∗ Tobias Fischer2 Nicolai Waniek3 Nico Reeb1,2 Michael Milford2

Alois Knoll1 Adam D. Hines2

Abstract—Efficient spatial navigation is a hallmark of the mam-
malian brain, inspiring the development of neuromorphic systems
that mimic biological principles. Despite progress, implementing
key operations like back-tracing and handling ambiguity in bio-
inspired spiking neural networks remains an open challenge.
This work proposes a mechanism for activity back-tracing in
arbitrary, uni-directional spiking neuron graphs. We extend the
existing replay mechanism of the spiking hierarchical temporal
memory (S-HTM) by our spike timing-dependent threshold
adaptation (STDTA), which enables us to perform path planning
in networks of spiking neurons. We further present an ambiguity
dependent threshold adaptation (ADTA) for identifying places in
an environment with less ambiguity, enhancing the localization
estimate of an agent. Combined, these methods enable efficient
identification of the shortest path to an unambiguous target. Our
experiments show that a network trained on sequences reliably
computes shortest paths with fewer replays than the steps required
to reach the target. We further show that we can identify places
with reduced ambiguity in multiple, similar environments. These
contributions advance the practical application of biologically
inspired sequential learning algorithms like the S-HTM towards
neuromorphic localization and navigation.

I. INTRODUCTION

Localization is an important process of many navigation
systems, providing the ability to know where in the world
you are based on a variety of sensory modalities [1], [2].
Modern techniques that perform localization often rely on
supervised deep-learning architectures, which require manually
labeled datasets that can require high energy consumption,
with long training and deployment times [3]. Therefore,
there is significant interest in exploring alternative computing
architectures that can be used for real-world scenarios in robotic
deployment on size, weight and power (SWaP) constrained
platforms.

A promising direction for such navigation systems is
neuromorphic computing, which is inspired by the dynamics
of biological neurons. Neuromorphic systems have been shown

This research was partially supported by funding from ARC DECRA Fel-
lowship DE240100149 to TF and an ARC Laureate Fellowship FL210100156
to MM. The authors acknowledge continued support from the Queensland
University of Technology (QUT) through the Centre for Robotics. This work
has been supported by a fellowship of the German Academic Exchange Service
(DAAD) and by the FFG, Contract No. 881844: “Pro2Future”.
1School of Computation, Information and Technology, Technical University
of Munich, Munich, Germany.
2QUT Centre for Robotics, School of Electrical Engineering and Robotics,
Queensland University of Technology, Brisbane, Australia.
3Department of Mathematical Sciences, Norwegian University of Science and
Technology, Trondheim, Norway.
∗robin.dietrich@tum.de

A B C G

D E F

Activity Back-Tracing in Spiking Neural Networks

R
e
p

la
y
 -

 n
o
 B

T

TargetShortest Path

Alternative Path

A B C G

D E F

A B C G

D E F

 A B C G

 A B D E F G

 A B C G

 A B D E F G

 A B C G

 A B D E F G

Back-Tracing

Inhibition

1
.
 R

e
p

la
y
 -

 B
T

2
.
 R

e
p

la
y
 -

 B
T

Reduced threshold - BT C

 Earlier spike time

 Global inhibition

Reduced threshold - target G

 Earlier spike time

 Global inhibition

Equal thresholds

 Equal spike times

Fig. 1. (Left) The uni-directionally connected network graph during replay,
initiated at A and with two paths to the target G. Shown are a replay without
back-tracing and two replays with back-tracing, i.e. with neuronal activity
traced backwards from target to start. (Right) The activity of the neuronal
populations visualized with timing, demonstrating that threshold adaptation in
combination with activity back-tracing enables path planning in SNNs.

to perform low-power, low-latency operations in many appli-
cations [4]–[9]. Neuromorphic systems are highly specialized
accelerators for spiking neural networks (SNNs), which operate
on the principle of massively parallel, asynchronous, sparse
data processing and representations to achieve energy and com-
putational efficiency [10]–[12]. Nonetheless, the development
of neuromorphic computing faces important open questions,
particularly in the selection of neuron models and learning
algorithms that optimally utilize the diverse set of existing
neuromorphic hardware [12]–[17].

While many models and learning rules for SNNs are inspired
by biology, an alternative approach is to adapt classical
algorithms and data structures, which have shown to be efficient
or optimal, to the unique architecture of SNNs [18]–[20].
Although SNNs are often recurrent, their connections are
largely uni-directional with limited ability to propagate infor-
mation backwards for network learning [21]–[26]. In addition
to back-propagation, the concept of information back-tracing
is a foundational technique to many graph and navigation
algorithms that are based on Dijkstra’s algorithm [27]. There
is, however, no adequate implementation of back-tracing for
SNNs yet.

ar
X

iv
:2

50
3.

21
79

5v
1

 [
cs

.N
E

]
 2

2
M

ar
 2

02
5

https://ieeexplore.ieee.org/

Most existing graph-based SNN algorithms implement
a backwards flow of information by altering the network
structure or dynamics by introducing additional backward
connections [28], [29] and plasticity rules [30], respectively.
Shortest path algorithms for SNNs also commonly require
the nodes (locations) in the graph to be represented by a
single neuron [29]–[31], even though most biological and
neuromorphic navigation studies agree on the advantages of
population codes for location representations [32]–[35].

In this work, we investigated the issue of information back-
tracing in a uni-directionally connected SNN, where a location
is represented by a population code, with a focus on localization
and navigation problems. For this purpose, we interpret the
abstract symbols introduced by the S-HTM as places in the
same way that conventional topological localization systems do
[36]–[38]. We then propose a novel approach to neuromorphic
back-tracing that exploits the temporal dynamics of neurons in
an SNN in the context of a simulated spatial navigation task,
as shown in Fig. 1. Specifically, our contributions are:

1) Introducing a spike timing-dependent threshold adapta-
tion (STDTA) for activity back-tracing in arbitrary uni-
directional spiking neuron graphs through replay.

2) Demonstrating the effectiveness of our approach in navi-
gation tasks, achieving shortest path planning with fewer
replays than steps from start to goal.

3) Development and demonstration of an ambiguity depen-
dent threshold adaptation (ADTA) method which identifies
places with lower ambiguity, potentially enabling localiza-
tion improvements after shortest path determination with
STDTA.

4) Code extensions to our openly accessible framework for
the S-HTM with code being publicly available at https:
//github.com/dietriro/neuroseq.

II. RELATED WORK

In this section, we review related work that covers the SNN
model used in our simulations (Section II-A), neuromorphic
navigation and localization (Section II-B), and finally path
planning and back-tracing (Section II-C).

A. Hierarchical Temporal Memory Model

Our work is based on the hierarchical temporal memory
(HTM) that models sequential processing in the neocortex
of mammalian brains [39]. We further draw inspiration from
both, pre-play activity of neurons in the Hippocampus that
predicts future paths [40]–[42] and Theta phase precession,
defined by unique temporal signatures of neuronal activity in
the Hippocampus [43], [44]. The HTM uses multi-compartment
neuron models with active dendrites in combination with
structural spike timing-dependent plasticity (sSTDP) to learn
sequences, predict future symbols, and replay already learned
sequences [45]. While it was shown to be effective in ap-
plications such as anomaly detection [46] and visual place
recognition [47], its abstract, binary implementation, however,
does not include any neuronal dynamics close to biology.

The S-HTM [48], a spiking version of the HTM, attempts
to close this gap. Unlike the original HTM, which uses

Network Architecture for BT in S-HTM

 A B C G

 A B D E F G

Input

Stimulus Replay

Excitatory

Subpopulations

Inhibitory Neurons

A Initial Replay

 A B C G

 A B D E F G

B Final Replay

local

global

path 1activated

connections path 2

inhibited

connections

threshold

update

path 2

global

inhibition

threshold

reduction

0max

inh. pop.

Fig. 2. The network structure of our version of the S-HTM after learning two
sequences (brown, turquoise) from the environment shown in Fig. 1. Akin to
the original S-HTM [48], our version consists of excitatory subpopulations
Ml, one for each location l. Each of these subpopulations is equipped with
an inhibitory neuron Il, which is active during prediction and replay. The
newly introduced global inhibitory neuron Ī receives excitatory input from all
local inhibitory neurons and maintains inhibitory connections to the excitatory
subpopulations. It is only active during replay, to enable path selection by
inhibiting alternative, slower paths. Adapted from [51].

a distributed columnar structure, it organizes neurons into
subpopulations (M), each representing a distinct symbol, such
as MA for the start location (see Fig. 2). These subpopulations
are managed by external and inhibitory neurons to control acti-
vation levels and ensure selective firing. The model implements
spiking multi-compartment neurons that receive predictive
inputs and trigger symbol onset, enabling the prediction of
future states through connections learned by an sSTDP learning
rule. By reducing the spike threshold of the excitatory neurons,
the dendritic prediction alone is sufficient for causing a neuron
to fire. With this mechanism, previously learned sequences can
be replayed by triggering the first symbol of a sequence only
(see Fig. 2). While the S-HTM successfully replicates HTM
functionality with enhanced biological plausibility, it remains
primarily focused on biological feasibility rather than practical
real-world or hardware applications, although its suitability for
neuromorphic computing has already been demonstrated [49],
[50]. Here, we use the S-HTM in a shortest path planning task
for localization and navigation for a real-world use case.

B. Neuromorphic Localization and Navigation

Several neuromorphic systems have been proposed for local-
ization and navigation. This includes spiking and non-spiking
neural network architectures [52]–[55], insect-brain inspired
approaches for route following and goal-directed homing
tasks [56], and more comprehensive approaches to localization
that fuse neuromorphic sensors, hardware, and algorithms
to perform visual place recognition to estimate an agent’s
position in the world [57]–[65]. Non-spiking neuromorphic
approaches also demonstrate impressive performance across
different functions, such as deployment on tiny drones for
small-scale navigation and mapping or the aforementioned
route following task [54], [55]. These results highlight the

https://github.com/dietriro/neuroseq
https://github.com/dietriro/neuroseq

potential of neuromorphic principles and algorithms across a
range of tasks, not limited just to navigation and localization.

C. Path Planning and Back-Tracing

Numerous graph-based path planning and search algorithms
use a variant of Dijstrak’s algorithm, and therefore back-tracing,
at their core [27], [66]–[74]. In brief, these algorithms typically
begin at a specific node in the graph and continue searching
until the target node is found. Then, back-tracing traverses the
graph in reverse order to trace a path from a target back to the
start. This differs to back-propagation [25], [26] in that it does
not carry gradient information but rather focuses on identifying
specific sequences of nodes. The ability to perform back-tracing
in SNNs shows promise to be utilized in neuromorphic robotic
localization and navigation tasks, where sequences of nodes
correspond to recognizable places in the world, due to its
inherently sequential process.

To perform the back-tracing step of path planning in
SNNs, existing approaches often introduce additional back-
ward connections, or explicitly reverse the direction of the
computation [28], [29]. Alternatively, the shortest path can be
determined by increasing connection weights during inference
using plasticity rules [30] or entirely removing the weights of
all other connections [75]. Both approaches, however, perma-
nently modify the network’s connections, thereby influencing
potential future searches. Others used axonal delays based
on environmental circumstances in combination with a list of
spikes [76], or generated tables of neuronal spike times for
back-tracing [77], [78]. These methods all share the need
for additional mechanisms to determine the shortest path,
whether through extra learning processes, delays, or backward
connections. Neither of these methods shares our aim of
enabling path planning through back-tracing in sequentially
learned SNNs, where a location is represented by multiple
neurons.

III. METHODOLOGY

Our method builds upon the previously developed S-HTM
[48], which offers the ability to replay learned sequences. The
S-HTM model is capable of switching between a prediction
mode, where it learns sequences of symbols, and a replay
mode, where it is recalling or planning existing ones. The
replay process is mitigated by adjusting activation thresholds
of the neurons within the network after the prediction phase.
This adjustment enables the network to activate neurons based
solely on internal predictions, removing the need for external
signals. A replay is then triggered by an external stimulus
presented to the neuronal subpopulation representing the start
of a sequence. A chain of activity then moves through the
learned sequences of symbols until they all naturally conclude.
This dynamic process is visualized in Figs. 2 and 3.

We will first discuss preliminaries for the implementation
of our S-HTM model in Section III-A, before introducing our
approach for path planning by information back-tracing in a
trained S-HTM network with a pre-defined start and target
location (Section III-B). We then describe a modification of
this approach, which solves the place disambiguation problem,

i.e. finding a less ambiguous or unique place for improving a
location estimate (Section III-C). We use the example illustrated
in Fig. 3 throughout this section to explain both methods.

A. Preliminaries

In our localization and path planning task using the S-HTM,
each neuron subpopulation Ml represents a specific location
l in a 2D environment (e.g. l ∈ {A,B,C, ...}). We therefore
also refer to these subpopulations as locations throughout
this manuscript. These subpopulations are connected based on
learned sequences [48]. The trained network can be interpreted
as a directed graph, where each node (neuronal subpopulation)
corresponds to a place and the edges (connections) act as
pathways between them (Fig. 3a). This structure allows us to
determine the shortest path by navigating through the network
of spiking neurons, akin to finding the shortest path in a
traditional graph. We use this sequence learning mechanism
(prediction) of the original S-HTM [48] to generate these
directed graphs of spiking neurons. Our path planning and
place disambiguation algorithms are then built around the
existing replay mechanism [48].

The structure of the network is shown exemplary in Fig. 2.
In addition to the local inhibitory neuron Il per excitatory
subpopulation Ml [48], we introduce an additional global in-
hibitory neuron Ī . This neuron receives excitatory connections
from the local inhibitory neurons and maintains an inhibitory
connection to each excitatory subpopulation. This way, only
one global inhibitory spike is triggered for all subpopulations,
even if multiple subpopulations are active concurrently, such as
locations C and D in Fig. 2. The global inhibition is necessary
to enable the subpopulations belonging to the shortest path to
inhibit subpopulations belonging to alternative paths.

B. Shortest Path Finding in SNNs

Target selection: The first step of our proposed method
for shortest path finding in a sequentially connected S-HTM
network is the activation of a start subpopulation Ω. Prior to
triggering the first replay, however, we adapt the threshold
θMΦ

of the membrane voltage before the first replay (r0) for
the entire excitatory subpopulation MΦ of the target location
Φ as follows:

θMΦ
(r0) = θMΦ

(r0) · λΦ, (1)

with λΦ defining the target threshold rate. In the example
presented in Fig. 3 the start population is defined as Ω = A
and the target location as Φ = G. The update (Eq. 1) in
this example is then performed for the target MG before the
first replay (Replay 2) of the path planning is initiated. In
subsequent replays, the path is then back-traced through the
subpopulations representing C and B, until the start location A
is reached.

The replay process is initiated by an external stimulus
presented to the start subpopulation MA. Due to the threshold
reduction (Eq. 1) applied to the target neuron subpopulation
MG before the first replay, its firing time is shifted forward in
time (Fig. 3b, Replay 1, purple). This adjustment causes MG

to inhibit neurons in ME through the global inhibitory neuron

A B C G

D E F

A B C

D E F

1

2

Environments

A B C

D E F

Path

G

(a)

B

A

B

C

D

E

F

G

t

Replay 2 Replay 3(Replay 1)

only for place disambiguation

A

C

G

ADTAActive Context Inactive Context Global Inhibition STDTA

(b)

Fig. 3. (a) Two example environments alongside the target path. (b) An overview of 3 replay phases for a path planning or place disambiguation problem. The
ovals represent an active (orange) or inactive (grey) subset of a subpopulation, representing a context. The first replay is only necessary for place disambiguation,
where a target location with reduced ambiguity (less active neurons) is identified and its threshold is adapted (pink). During path planning, however, the
target is manually set before Replay 2. Due to the reduced threshold, the neurons in subpopulation MG spike earlier than the neurons in ME , which are
consequently inhibited by Ī . After Replay 2, the information of the earlier spike time is propagated to the neurons in MC by a spike timing dependent
rule, resulting in a threshold adaptation for MC . During the final replay, this leads to an inhibition of the competing subpopulation (path) MD , resulting in
neuronal activity representing the final shortest path.

Ī, which otherwise would have fired concurrently with MG

during Replay 2 (Fig. 3b, red arrows). As a result, all alternative
paths are suppressed by the global inhibition, i.e. populations
ME and MF . However, multiple paths remain active between
populations MC and MD (Fig. 3b), necessitating an additional
mechanism to inhibit these intermediate, alternative paths.

Back-tracing learning rule: To address the limitation of
unidirectional connections in S-HTM networks, we introduce
a method to back-trace path information without the need
for additional backward connections. Instead of modifying
the network architecture, we update the firing thresholds of
the respective membrane potentials (θMl

) through a series
of replays. This approach enables the network to inhibit
alternative paths by performing a spike timing-dependent
threshold adaptation (STDTA) based on learned sequences.

After each replay iteration throughout the replay process,
the threshold of a neuronal subpopulation Mm is adapted if
the spike time between that subpopulation and its connected
subsequent subpopulation Mn is within a certain range:

∆tbmin < ∆t(i, j) < ∆tbmax, (2)

with ∆tbmin and ∆tbmax denoting the lower and upper bound,
respectively, for the time difference ∆t(i, j) between a pre-
synaptic spike of neuron i ∈ Mm and a post-synaptic spike of
neuron j ∈ Mn. The pre-synaptic subpopulation Mm further
needs to maintain a minimum number of connections to Mn

in order to activate the STDTA:

Ncon(i, j) > ρ, (3)

with ρ denoting the targeted number of active neurons for

a single context within a subpopulation. This rule assures
that a pre-synaptic subpopulation m is only considered for an
update if it maintains enough connections to the post-synaptic
subpopulation n to have potentially triggered its activation.

Finally, the threshold for each subpopulation Ml satisfying
both of these constraints is updated after every replay r:

θMl
(r) = θMl

(r − 1) · λb, (4)

with θMl
(r−1) denoting the value θMl

at the previous replay
(r − 1) and λb defining the back-tracing rate.

In the example depicted in Fig. 3b, the threshold for
subpopulation MC is thus decreased because it maintains
connections to MG and the spike time difference ∆t(C,G)
between MC and MG is lower due to the reduced threshold of
MG. Conversely, the threshold for subpopulation MD remains
unchanged, since it does not maintain any connections to MG

and no other populations were active after MD during the
second replay. This selective threshold adjustment based on
spike times effectively inhibits non-optimal paths, ensuring that
only the shortest path in the network is active.

This process ultimately results in a single, shortest path from
the start to the target subpopulation being active during the final
replay (see Fig. 3b, Replay 3). In this step, the reduced threshold
(Replay 2, purple arrow) causes neurons in MC to spike earlier,
thereby inhibiting the neurons in MD (Replay 3, red arrows).
In this toy example, the back-tracing process required only
one replay step. However, in larger environments, this process
may require multiple replay steps, equal to the number of
intermediate locations with overlapping active populations (e.g.,
MC and MD in this example).

C. Place Disambiguation in SNNs

Population encoding for unique places: In the previous
section, we described a solution to the general path planning
problem with a pre-defined start and goal location. There are,
however, cases, where the goal location is not known a priori,
such as in the case of localization. When a person or an agent
is placed in a new environment at an ambiguous location, such
as the beginning of a hallway that looks the same on many
floors, finding a less ambiguous location to localize oneself
becomes a crucial task. An example for such environments is
shown in Fig. 3a (Top). The two environments visualized here
are almost identical, besides location G, which is only present
in Environment 1. Since location G can only occur in a single
context, a smaller subset of neurons from subpopulation MG

would be active during a replay, compared to the other, aliased
locations (e.g. ME). It is therefore considered advantageous to
visit location G in order to improve the location estimation of
the agent and distinguish between the Environments 1 and 2.

Ambiguity dependent threshold adaptation: To distinguish
ambiguous from more unique places, we propose a rule for
adaptive neural thresholding based on the ambiguity of a place,
i.e. the activity of the entire subpopulation. We define this rule
as an ambiguity dependent threshold adaptation (ADTA). A
subpopulation of neurons representing a symbol can constitute
multiple different contexts. The number of contexts each
subpopulation can represent is determined mainly by the target
number of neurons per context (ρ) and the total number of
neurons within the subpopulation (N). After learning, the
ambiguity is hence a direct correlation between the number
of active neurons within a subpopulation and the number of
contexts represented by these neurons. We use this property
of the network to define the threshold update for all neurons
in subpopulation Ml as follows:

θMl
(r) = θMl

(r) · eγ(Fa−Fρ) · λa, (5)

with

Fa =
N act

l

Nl
and Fρ = ρ

Nl
, (6)

where Fa and Fρ define the fraction of active and targeted
(per context) neurons, respectively. The threshold adaptation
rate based on ambiguity is defined by the variable λa. The
total number of excitatory neurons in Ml is defined by the
parameter Nl. The number of active neurons in Ml is defined
by N act

l and determined by grouping the spikes within the
respective subpopulations for each replay individually. The
slope of the exponential increase or decay is defined by γ as
follows:

γ =

 γ+ if Fa ≥ Fρ,

γ− else.
(7)

This threshold adaptation is applied after the STDTA update
and results in an additional shift of the firing time for neurons
relative to the fraction of active neurons in a subpopulation.
This is shown for Replay 1 in Fig. 3b, where only one group
of neurons (one context) is active for MG opposed to all
other subpopulations, maintaining two active contexts each.

The threshold for MG is thus reduced based on the ADTA
rule (pink arrow). Due to the reduced threshold, the neurons
in MG subsequently fire earlier during Replay 2, akin to the
behavior of the same population in the previous path planning
scenario. This consequently results in an inhibition of the
other subpopulations (ME) by the global inhibitory neuron Ī ,
preventing them from firing at all (red arrows). After this step,
the same process as described in Section III-B is carried out
to identify the shortest path to this new, unambiguous target.

IV. EXPERIMENTAL RESULTS

In this section, we introduce the experimental setup, the
software and parameters used for our evaluations (Section
IV-A). The experiments presented thereafter are separated into
two parts. First, we evaluate the path planning capabilities with
a specified target in Section IV-B. Subsequently, we analyze
the performance of the network for place disambiguation in
Section IV-C.

A. Experimental Setup

The presented algorithm was developed and implemented
in the spiking network framework PyNN [79], with the NEST
simulator as a backend [80], and is built on previous work [48],
[49]. The general process we use for performing the replay
as well as most of the parameters are the same as presented
in earlier studies [48], [51]. Deviations from the process or
parameters are mentioned in the following and throughout the
remaining evaluation where applicable. The parameter changes
are summarized in Table I. We set the random seed responsible
for, e.g, sampling the connections between subpopulations to
a constant value of 5 for all experiments.

We define the ambiguity α of a location l as the number of
occurrences in a set of partially overlapping environments:

α(l) = o(l, E), (8)

where o(l, E) defines the number of occurrences of location l
in a set of environments E. A location l1 which occurs once
in a set of environments therefore has the lowest ambiguity
value of α(l1) = 1 while a place l2 occurring in x of the
given environments has a value of α(l2) = x. This value is
also directly proportional to the number of neurons active for
a place during replay:

N̄act
l = α(l) · ρ, (9)

where N̄act
l is the targeted number of active neurons per

subpopulation defined in the parameters.
For the threshold update in Eq. 5, we set γ+ = −8 and

γ− = 20 for all experiments. We identified suitable values for γ
by hand, which yielded good results for the examples described
in this section, the value of which would change with different
required network parameters, especially the maximum target
offset. The upper threshold for the back-tracing update ∆tbmax
was selected to guarantee that only subpopulations with active
connections to a post-synaptic subpopulation which already has
a reduced threshold are updated. This value fluctuates based
on the environments, connections, and initializations and is
therefore slightly different in the path-planning experiment

A B C D

F G
After

Learning

Environments

E

H J I

After

Replay

A B C D

F G

E

H J I

Target

Target

Alternative Path

Shortest Path

Alternative Path

Shortest Path

(a)

Threshold update

 STDTA
H

Target activation

 global inh.

 back-tracing

J

Alternative path

 inhibited
G

Back-tracing Procedure

(b)

A

B

C

F

H

J

(c)

Fig. 4. (a) (Top) A graphical representation of active connections between locations before and (bottom) after replay with the shortest path (turquoise), an
alternative path (brown), and the target (red). (b) An overview of the corner stones of the back-tracing and threshold adaptation process, showing events from
populations MJ , MG, and MH . (c) (top) The results of the path planning replay process for a target path from A to J with the events for all neuronal
populations, the final path of active neuronal populations (right), (bottom) and the thresholds throughout the replay phases. The neuronal events include a
somatic spike (orange), triggered by a dendritic plateau potential (blue), or the initial, external input (grey), together with local (green) and global inhibition
(red). The steps of the back-tracing are highlighted for each phase, including the current target (solid red), the inhibited alternative population (dashed red), and
the populations performing an STDTA update (purple).

than in the ambiguity experiments. We increase this value for
the ambiguity-02b experiment to explicitly allow the update
for all active subpopulations.

All networks used in our experiments have been trained
for 50 epochs on a set of sequences in the same way as
presented in previous works [48], [51]. The start location for
all sequences is chosen to be A. We assume that, during training,
the start location as well as the onset of a new sequence is
known. Hence, we activate a sparse, sequence specific firing
of the start subpopulation [48]. When switching from training
to replay mode, we once set the neuronal threshold for all
populations l to θMl

= 6.5 to enable somatic spikes being
triggered solely by dendritic input [48]. We then perform a
number of replays until the network converges to a solution.
There is currently exists no automated stop condition for the
replay process.

TABLE I
THE PARAMETERS USED IN EACH OF THE PATH PLANNING AND PLACE

DISAMBIGUATION EXPERIMENTS.

Experiment N ρ ∆tbmax λΦ λb λa

path-planning (Fig. 4) 21 3 58 0.8 0.9 -
ambiguity-01 (Fig. 5) 21 3 55 - 0.9 0.2
ambiguity-02a (Fig. 6a) 21 3 55 - 0.9 0.2
ambiguity-02b (Fig. 6b) 21 3 60 - 0.9 0.2

B. Shortest Path Finding in SNNs

We evaluated the path planning capabilities of the S-HTM
on a single environment which is shown in Fig. 4a. The
environment consists of 10 unique locations. The network
is trained on two sequences ([A, B, C, F, H, J], [A, B, C, D,
E, G, I, J]), where the first one constitutes the shortest path to
the target J and the second one a longer, alternative path.

The results, shown in Fig. 4b, demonstrate that the network
is capable of calculating the path from the start location A to
the target location J within three iterations of replay. During
the first replay, the active neurons in subpopulation J fire earlier
compared to the ones in G, due to the reduced threshold of
the neurons in J for being in the target subpopulation. The
neurons in MJ therefore trigger a globally active inhibition
(red) and prevent MG from firing. The reduced threshold of
MJ consequently leads to an earlier spike time of MJ with
respect to the spike time of the previous location MH .

Based on the learning rule presented in Section III-B, the
threshold for all neurons in MH gets reduced according to
Eq. 4. Therefore, this subpopulation of neurons inhibits the
neurons in ME during the second replay. This two-step process
is visualized separately in the zoomed clippings in Fig. 4b for
the inhibition triggering, earlier spiking population MJ (top),
the inhibited population MG (center), and the subpopulation
receiving a threshold update through STDTA MH (bottom).

Environments

A B C D

1
E

A B C D

F

2

A B C

F

3

(a)

A

B

F

(b)

Fig. 5. (a) A graphical representation of the environments used for the place disambiguation experiments, environments 1 and 2 are used for the first experiment
and all three for the second. (b) The results of the first place disambiguation experiment for environments 1 and 2, with the events for all neuronal populations
(top), the final path of active neuronal populations (right), and the thresholds throughout the replay phases (bottom). The neuronal events are depicted as in
Fig. 4c, except for the newly introduced ADTA updates due to reduced ambiguity (pink).

The same mechanism is applied to the subpopulation MF ,
which then inhibits MD during the final (third) replay. The
activity is successfully propagated backwards to the first
common location C, leaving only one path of subpopulations
to the target J active, the shortest path. As demonstrated
by this experiment, the number of replays required for an
arbitrary path calculation is always equal to the number
of locations (subpopulations) within a shortest path where
another subpopulation is active as well, i.e. the number of
simultaneously active locations. Therefore, in most scenarios,
much less replays are required than the number of total steps
to a goal, since there is usually an overlap between paths.

C. Place Disambiguation in SNNs

In the second part of our experiments, we evaluated the abil-
ity of the presented method to identify unique or less ambiguous
places in two different scenarios. The first scenario uses two
very similar environments to demonstrate the general capability
of the algorithm to find unique places in environments with
many ambiguous places and subsequently identify the shortest
path to it. The second scenario adds another environment to
analyze the behavior of our learning algorithm when multiple
levels of ambiguity exist among the different places in the
environments. The sequences used for training the networks
include all possible paths from the start location A to any final
location in the respective environments, e.g. E and D in the
first environment (Fig. 5a).

Binary disambiguation: The first two environments share
the center part (A, B, C, D), while both include one unique
location (E and F respectively). The unique location in the
first environment (E), however, is one hop further away from
the start location A. We would therefore expect the network to
prefer location F over E. The results for these experiments are
shown in Fig. 5. They demonstrate that the network identifies
the two unique places E and F during the first replay and

reduces their threshold thereafter (pink) based on Eq. 5. Since
MF , however, spikes earlier than ME , it inhibits population
MC , which leads to the alternative unique place. Therefore,
while the firing thresholds of the neurons in both populations
are reduced, only the one that is closest to the start population
in the number of steps wins. In this example, the activation
does not need to be back-traced further as this initial inhibition
of MC during the second replay is sufficient for identifying a
single path to the closest unique place F (Fig. 5b, right).

Multiple ambiguities: In our second place disambiguation
experiment, we demonstrate not only the back-tracing of the
path to the goal but also analyze the replay behavior in the
presence of multiple places with varying ambiguity. For this
purpose, we added Environment 3 to our world, which shares
the previously unique place F with Environment 2. The only
unique place remains E (α(E) = 1), while F and D become
more ambiguous (α(F) = α(D) = 2) in this new scenario,
ranking now between place E and the center part (A, B, C with
α = 3).

Depending on the target application there can be two desired
outcomes for this scenario. Either the closest place with reduced
ambiguity is targeted (F) or the place with the least ambiguity
is targeted regardless of the distance (E), therefore place D
should never be selected as the target. The default behavior of
the network, using the parameter configuration of the previous
experiments, is shown in Fig. 6a. It results in the first behavior,
as it always targets the closest place that is less ambiguous
than other equidistant places. In this experiment, the upper
spike timing threshold of the back-tracing ∆tbmax is chosen to
be small enough to only allow updates for neurons, whose
post-synaptic neuron already has a reduced threshold, i.e. an
earlier spike time leading to a ∆t(i, j) < ∆tbmax.

Opposed to this, an increase of this parameter eventually
enables a spike threshold update (STDTA) for each subpop-
ulation that precedes another active subpopulation during
replay. This potentially enables subpopulations to inhibit other

A

B

F

(a)

A

B

E

C

(b)

Fig. 6. The results of the second place disambiguation experiment, including all three environments (Fig. 5a). Two separate runs, a and b, are shown with
different parameters, one is favoring the closest place with reduced ambiguity (a), the other favors the place with minimal ambiguity but higher distance to the
start location. For each experiment, the events for all neuronal populations are shown (top) and the thresholds throughout the replay phases (bottom) are
visualized. The neuronal events are depicted as in Fig. 5b.

subpopulations representing locations with less but not the least
ambiguity, such as the location F. We tested this behavior on the
given environments with ∆tbmax = 60. The results, visualized in
Fig. 6b, show that, although the threshold for MF is reduced
after the first replay, the overall threshold adaptation outweighs
this reduction. This allows the back-tracing of the path to the
least ambiguous location E within the next round of replay.

This behavior is governed by the upper spike timing threshold
of the back-tracing ∆tbmax, the back-tracing rate λb, the
ambiguity dependent threshold adaptation rate λa, and the
slope of the exponential increase/decay defined by γ (see
Eq. 5). Each of these parameters influences the behavior in its
own way. Suitable parameter combinations therefore have to
be found individually for different situations.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented a novel technique for
shortest path finding and place disambiguation in spiking neural
networks applied to navigational tasks. Through spike timing-
dependent threshold adaptation (STDTA), our network is capa-
ble of back-tracing activity from a target to a start population
of neurons by modulating the firing activity (threshold) of
the neurons. We demonstrated that this mechanism is capable
of effectively inhibiting alternative, longer paths during a set
of replays. We further showed that the number of replays
required is generally limited by the number of places in the
shortest path. Beyond that, we introduced a novel method
for identifying places with reduced ambiguity, which shows
promise for improving the localization estimate of an agent.
We showed that, by using an ambiguity dependent threshold
adaptation (ADTA) rule, we can identify places with reduced
ambiguity and distinguish between places with different levels
of ambiguity.

We thereby laid the foundation for future applications of
the S-HTM or similar networks to real-world navigation and
localization problems. Whilst we simulate input data in this
study as a proof-of-concept for effective shortest path planning,
future work will focus on integrating and processing real-
world sensor data with the S-HTM. This will allow more
complex experiments and benchmarks with other localization
and navigation systems, such as simultaneous localization and
mapping (SLAM) [59], [63].

The design of our proposed replay learning mechanism
will also allow a more efficient implementation on a range
of neuromorphic processors, since the threshold adaptation
requires only local learning. The spiking path planning and
place disambiguation could therefore be deployed as a neuro-
morphic navigation system on processors such as Loihi [15],
Speck [81], or SpiNNaker [13]. This fusion of neuromorphic
software and hardware would further allow for application-
oriented benchmarks of the back-tracing with respect to energy
efficiency and inference time.

Beyond navigation, our method provides a useful means of
learning and processing sequential information, with potential
benefits in a variety of applications, such as natural language
processing [82] or anomaly detection [46]. From a theoretical
perspective, we will further analyze the timing protocol used for
threshold adaptation and generalize it beyond S-HTM, while
drawing on insights from the Transition-Scale-Space model that
accelerates the retrieval of place-sequences in navigation [83].

In conclusion, we have demonstrated the effectiveness
of replay and threshold adaptation for path planning and
localization in a functional real-world use case, showcasing the
benefit of using biologically inspired neural networks, such as
SNNs, to perform complex sequence-based tasks in localization
and navigation.

REFERENCES

[1] J. Borenstein, H. R. Everett, and L. Feng, Navigating Mobile
Robots. Natick, MA: A K Peters, Jan. 1996.

[2] D. Fox, W. Burgard, and S. Thrun, “Markov localization for
mobile robots in dynamic environments,” Journal of Artificial
Intelligence Research, vol. 11, no. 1, 391–427, Jul. 1999.

[3] S. Mokssit, D. B. Licea, B. Guermah, and M. Ghogho, “Deep
Learning Techniques for Visual SLAM: A Survey,” IEEE
Access, vol. 11, pp. 20 026–20 050, 2023.

[4] F. Paredes-Vallés, J. J. Hagenaars, J. Dupeyroux, S. Stroobants,
Y. Xu, and G. C. H. E. de Croon, “Fully neuromorphic vision
and control for autonomous drone flight,” Science Robotics,
vol. 9, no. 90, May 2024.

[5] S. Stroobants, C. De Wagter, and G. De Croon, “Neuromorphic
control using input-weighted threshold adaptation,” in Proceed-
ings of the 2023 International Conference on Neuromorphic
Systems, ser. ICONS ’23, ACM, Aug. 2023, 1–8.

[6] G. Tang, A. Shah, and K. P. Michmizos, “Spiking neu-
ral network on neuromorphic hardware for energy-efficient
unidimensional SLAM,” in 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), IEEE,
2019, pp. 4176–4181.

[7] D. A. Harbour, K. Cohen, S. D. Harbour, et al., “Martian flight:
Enabling motion estimation of nasa’s next-generation mars
flying drone by implementing a neuromorphic event-camera
and explainable fuzzy spiking neural network model,” in 2024
AIAA DATC/IEEE 43rd Digital Avionics Systems Conference
(DASC), IEEE, Sep. 2024, 1–10.

[8] T. Oess, M. P. R. Löhr, D. Schmid, M. O. Ernst, and H.
Neumann, “From Near-Optimal Bayesian Integration to Neuro-
morphic Hardware: A Neural Network Model of Multisensory
Integration,” Frontiers in Neurorobotics, vol. 14, p. 29, May
2020.

[9] N. Perez-Nieves and D. Goodman, “Sparse spiking gradient
descent,” in Advances in Neural Information Processing
Systems, M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang,
and J. W. Vaughan, Eds., vol. 34, Curran Associates, Inc.,
2021, pp. 11 795–11 808.

[10] J. Göltz, L. Kriener, A. Baumbach, et al., “Fast and energy-
efficient neuromorphic deep learning with first-spike times,”
Nature Machine Intelligence, vol. 3, no. 9, pp. 823–835, 2021.

[11] M. Barnell, C. Raymond, L. Loomis, et al., “Advanced ultra
low-power deep learning applications with neuromorphic com-
puting,” in 2023 IEEE High Performance Extreme Computing
Conference (HPEC), IEEE, Sep. 2023, 1–4.

[12] C. Kadway, S. Dey, A. Mukherjee, A. Pal, and G. Bézard,
“Low Power & Low Latency Cloud Cover Detection in Small
Satellites Using On-board Neuromorphic Processors,” in 2023
International Joint Conference on Neural Networks (IJCNN),
Gold Coast, Australia: IEEE, Jun. 2023, pp. 1–8.

[13] S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, “The
SpiNNaker Project,” Proceedings of the IEEE, vol. 102, no. 5,
pp. 652–665, May 2014.

[14] J. Pei, L. Deng, S. Song, et al., “Towards artificial general
intelligence with hybrid Tianjic chip architecture,” Nature,
vol. 572, no. 7767, pp. 106–111, Aug. 2019.

[15] M. Davies, N. Srinivasa, T.-H. Lin, et al., “Loihi: A Neuro-
morphic Manycore Processor with On-Chip Learning,” IEEE
Micro, vol. 38, no. 1, pp. 82–99, Jan. 2018.

[16] O. Richter, C. Wu, A. M. Whatley, et al., “DYNAP-SE2:
A scalable multi-core dynamic neuromorphic asynchronous
spiking neural network processor,” Neuromorphic Computing
and Engineering, vol. 4, no. 1, p. 014 003, Mar. 2024.

[17] F. Akopyan, J. Sawada, A. Cassidy, et al., “TrueNorth: Design
and Tool Flow of a 65 mW 1 Million Neuron Programmable
Neurosynaptic Chip,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 34, no. 10,
pp. 1537–1557, Oct. 2015.

[18] R. Stagsted, A. Vitale, J. Binz, A. Renner, L. Bonde Larsen,
and Y. Sandamirskaya, “Towards neuromorphic control: A
spiking neural network based PID controller for UAV,” in
Robotics: Science and Systems XVI, Robotics: Science and
Systems Foundation, Jul. 2020.

[19] J. López-Randulfe, T. Duswald, Z. Bing, and A. Knoll,
“Spiking Neural Network for Fourier Transform and Object
Detection for Automotive Radar,” Frontiers in Neurorobotics,
vol. 15, 2021.

[20] J. B. Aimone, Y. Ho, O. Parekh, et al., “Provable Advan-
tages for Graph Algorithms in Spiking Neural Networks,”
in Proceedings of the 33rd ACM Symposium on Parallelism
in Algorithms and Architectures, ser. SPAA ’21, New York,
NY, USA: Association for Computing Machinery, Jul. 2021,
pp. 35–47.

[21] G. Bellec, F. Scherr, A. Subramoney, et al., “A solution to the
learning dilemma for recurrent networks of spiking neurons,”
Nature Communications, vol. 11, no. 1, p. 3625, 2020.

[22] T. P. Lillicrap, A. Santoro, L. Marris, C. J. Akerman, and
G. Hinton, “Backpropagation and the brain,” Nature Reviews
Neuroscience, vol. 21, no. 6, pp. 335–346, Jun. 2020.

[23] A. Renner, F. Sheldon, A. Zlotnik, L. Tao, and A. Sornborger,
“The backpropagation algorithm implemented on spiking
neuromorphic hardware,” Nature Communications, vol. 15,
no. 1, p. 9691, Nov. 8, 2024.

[24] W. Maass, “Networks of spiking neurons: The third generation
of neural network models,” Neural Networks, vol. 10, no. 9,
pp. 1659–1671, Dec. 1997.

[25] S. Linnainmaa, “The representation of the cumulative rounding
error of an algorithm as a Taylor expansion of the local
rounding errors,” M.S. thesis, University of Helsinki, 1970.

[26] D. E. Rumelhart and G. Hinton, “Learning Internal Representa-
tions by Error Propagation,” in Parallel Distributed Processing,
MIT Press, 1986, pp. 318–362.

[27] E. W. Dijkstra, “A note on two problems in connexion with
graphs,” Numerische Mathematik, vol. 1, pp. 269–271, 1959.

[28] U. Roth, M. Walker, A. Hilmann, and H. Klar, “Dynamic
path planning with spiking neural networks,” in Biological
and Artificial Computation: From Neuroscience to Technology,
J. Mira, R. Moreno-Dı́az, and J. Cabestany, Eds., Berlin,
Heidelberg: Springer, 1997, pp. 1355–1363.

[29] F. J. Ponulak and J. J. Hopfield, “Rapid, parallel path planning
by propagating wavefronts of spiking neural activity,” Frontiers
in Computational Neuroscience, vol. 7, Jul. 2013.

[30] C. D. Schuman, K. Hamilton, T. Mintz, et al., “Shortest
Path and Neighborhood Subgraph Extraction on a Spiking
Memristive Neuromorphic Implementation,” in Proceedings
of the 7th Annual Neuro-inspired Computational Elements
Workshop, ser. NICE ’19, New York, NY, USA: Association
for Computing Machinery, Mar. 2019, pp. 1–6.

[31] H. Ruan, Y. Chang, W. Wu, et al., “GSNN: A Neuromorphic
Computing Model for the Flexible Path Planning in Various
Constraint Environments,” IEEE Transactions on Automation
Science and Engineering, vol. 22, pp. 1081–1099, 2025.

[32] T. Hafting, M. Fyhn, S. Molden, M.-B. Moser, and E. I. Moser,
“Microstructure of a spatial map in the entorhinal cortex,”
Nature, vol. 436, no. 7052, pp. 801–806, Aug. 2005.

[33] R. Dietrich, N. Waniek, M. Stemmler, and A. Knoll, “Grid
codes vs. multi-scale, multi-field place codes for space,”
Frontiers in Computational Neuroscience, vol. 18, Apr. 2024.

[34] M. Milford, G. Wyeth, and D. Prasser, “RatSLAM: A hip-
pocampal model for simultaneous localization and mapping,”
in IEEE International Conference on Robotics and Automation,
2004. Proceedings. ICRA ’04. 2004, vol. 1, Apr. 2004, 403–408
Vol.1.

[35] G. Tang and K. P. Michmizos, “Real-time Mapping on a
Neuromorphic Processor,” in Proceedings of the Neuro-inspired
Computational Elements Workshop, ser. NICE ’20, New York,
NY, USA: Association for Computing Machinery, Mar. 2020,
pp. 1–3.

[36] M. Xu, T. Fischer, N. Sünderhauf, and M. Milford, “Probabilis-
tic appearance-invariant topometric localization with new place
awareness,” IEEE Robotics and Automation Letters, vol. 6,
no. 4, pp. 6985–6992, 2021.

[37] H. Badino, D. Huber, and T. Kanade, “Visual topometric
localization,” in 2011 IEEE Intelligent Vehicles Symposium
(IV), 2011, pp. 794–799.

[38] W. Maddern, M. Milford, and G. Wyeth, “Towards persistent
localization and mapping with a continuous appearance-based
topology,” in Proceedings of Robotics: Science and Systems,
Sydney, Australia, 2012.

[39] J. Hawkins, “HTM Cortical Learning Algorithms,” en, Nu-
menta, Whitepaper, 2011.

[40] B. E. Pfeiffer and D. J. Foster, “Hippocampal place-cell
sequences depict future paths to remembered goals,” Nature,
vol. 497, no. 7447, pp. 74–79, May 2013.

[41] M.-B. Moser, D. C. Rowland, and E. I. Moser, “Place Cells,
Grid Cells, and Memory,” Cold Spring Harbor Perspectives
in Biology, vol. 7, no. 2, a021808, Feb. 2015.

[42] E. I. Moser, M.-B. Moser, and B. L. McNaughton, “Spatial
representation in the hippocampal formation: A history,” Nature
Neuroscience, vol. 20, no. 11, pp. 1448–1464, Nov. 2017.

[43] J. O’Keefe and M. L. Recce, “Phase relationship between
hippocampal place units and the EEG theta rhythm,” Hip-
pocampus, vol. 3, no. 3, pp. 317–330, 1993.

[44] G. Dragoi and G. Buzsáki, “Temporal Encoding of Place
Sequences by Hippocampal Cell Assemblies,” Neuron, vol. 50,
no. 1, pp. 145–157, Apr. 2006.

[45] J. Hawkins and S. Ahmad, “Why Neurons Have Thousands
of Synapses, a Theory of Sequence Memory in Neocortex,”
Frontiers in Neural Circuits, vol. 10, Mar. 2016.

[46] J. Wu, W. Zeng, and F. Yan, “Hierarchical Temporal Memory
method for time-series-based anomaly detection,” Neurocom-
puting, vol. 273, Jan. 2018.

[47] P. Neubert, S. Schubert, and P. Protzel, “A Neurologically
Inspired Sequence Processing Model for Mobile Robot Place
Recognition,” IEEE Robotics and Automation Letters, vol. 4,
no. 4, Oct. 2019.

[48] Y. Bouhadjar, D. J. Wouters, M. Diesmann, and T. Tetzlaff,
“Sequence learning, prediction, and replay in networks of
spiking neurons,” en, PLOS Computational Biology, vol. 18,
no. 6, Jun. 2022.

[49] R. Dietrich, P. Spilger, E. Müller, J. Schemmel, and A. C.
Knoll, “Sequence Learning with Analog Neuromorphic Multi-
Compartment Neurons and On-Chip Structural STDP,” in
Machine Learning, Optimization, and Data Science, G. Nicosia,
V. Ojha, S. Giesselbach, M. P. Pardalos, and R. Umeton, Eds.,
Cham: Springer Nature Switzerland, 2025, pp. 207–230.

[50] Y. Bouhadjar, S. Siegel, T. Tetzlaff, M. Diesmann, R. Waser,
and D. J. Wouters, “Sequence learning in a spiking neuronal
network with memristive synapses,” en, Neuromorphic Com-
puting and Engineering, vol. 3, no. 3, Sep. 2023.

[51] Y. Bouhadjar, D. J. Wouters, M. Diesmann, and T. Tetzlaff,
“Coherent noise enables probabilistic sequence replay in spiking
neuronal networks,” en, PLOS Computational Biology, vol. 19,
no. 5, May 2023.

[52] T. Hwu, J. Krichmar, and X. Zou, “A complete neuromorphic
solution to outdoor navigation and path planning,” in 2017
IEEE International Symposium on Circuits and Systems
(ISCAS), 2017, pp. 1–4.

[53] J. P. Mitchell, G. Bruer, M. E. Dean, J. S. Plank, G. S.
Rose, and C. D. Schuman, “Neon: Neuromorphic control for
autonomous robotic navigation,” in 2017 IEEE International
Symposium on Robotics and Intelligent Sensors (IRIS), 2017,
pp. 136–142.

[54] J. Dupeyroux, J. R. Serres, and S. Viollet, “Antbot: A six-
legged walking robot able to home like desert ants in outdoor
environments,” Science Robotics, vol. 4, no. 27, 2019.

[55] T. van Dijk, C. D. Wagter, and G. C. H. E. de Croon, “Visual
route following for tiny autonomous robots,” Science Robotics,
vol. 9, no. 92, 1–13, 2024.

[56] T. Schoepe and E. Chicca, “Finding the Goal: Insect-Inspired
Spiking Neural Network for Heading Error Estimation,” in
2023 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Detroit, MI, USA: IEEE, Oct. 2023,
pp. 4727–4733.

[57] A. D. Hines, P. G. Stratton, M. Milford, and T. Fischer,
“VPRTempo: A Fast Temporally Encoded Spiking Neural Net-
work for Visual Place Recognition,” in 2024 IEEE International
Conference on Robotics and Automation (ICRA), Yokohama,
Japan: IEEE, May 2024, pp. 10 200–10 207.

[58] J. Wang, S. Lin, and A. Liu, “Bioinspired Perception and
Navigation of Service Robots in Indoor Environments: A
Review,” Biomimetics, vol. 8, no. 4, p. 350, Aug. 2023.

[59] Y. Yang, C. Bartolozzi, H. H. Zhang, and R. A. Nawrocki,
“Neuromorphic electronics for robotic perception, navigation
and control: A survey,” Engineering Applications of Artificial
Intelligence, vol. 126, p. 106 838, Nov. 2023.

[60] F. Yu, Y. Wu, S. Ma, et al., “Brain-inspired multimodal hybrid
neural network for robot place recognition,” Science Robotics,
vol. 8, no. 78, eabm6996, May 2023.

[61] G. Gallego, T. Delbruck, G. Orchard, et al., “Event-based
vision: A survey,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 44, no. 1, pp. 154–180, 2022.

[62] R. Kreiser, M. Cartiglia, J. N. P. Martel, J. Conradt, and Y.
Sandamirskaya, “A neuromorphic approach to path integration:
A head-direction spiking neural network with vision-driven
reset,” in 2018 IEEE International Symposium on Circuits and
Systems (ISCAS), IEEE, 2018, pp. 1–5.

[63] D. Weikersdorfer, R. Hoffmann, and J. Conradt, “Simultaneous
localization and mapping for event-based vision systems,” in
Proceedings of the International Conference on Computer
Vision Systems (ICVS), Springer, 2013, pp. 133–142.

[64] N. Waniek, J. Biedermann, and J. Conradt, “Cooperative
SLAM on small mobile robots,” in Proceedings of the 2015
IEEE International Conference on Robotics and Biomimetics
(ROBIO), IEEE, 2015, pp. 2103–2108.

[65] N. S.-Y. Dumont, P. M. Furlong, J. Orchard, and C. Eliasmith,
“Exploiting semantic information in a spiking neural SLAM
system,” Frontiers in Neuroscience, vol. 17, 2023.

[66] P. E. Hart, N. J. Nilsson, and B. Raphael, “A Formal Basis for
the Heuristic Determination of Minimum Cost Paths,” IEEE
Transactions on Systems Science and Cybernetics, vol. 4, no. 2,
pp. 100–107, Jul. 1968.

[67] A. Stentz, “Optimal and efficient path planning for partially-
known environments,” in Proceedings of the 1994 IEEE
International Conference on Robotics and Automation, May
1994, 3310–3317 vol.4.

[68] A. V. Goldberg and C. Harrelson, “Computing the Shortest
Path: A∗ Search Meets Graph Theory,” in Proceedings of
the Sixteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, ser. SODA ’05, Vancouver, British Columbia,
Canada: Society for Industrial and Applied Mathematics, 2005,
pp. 156–165.

[69] J. Dibbelt, B. Strasser, and D. Wagner, “Customizable con-
traction hierarchies,” in Experimental Algorithms. Springer
International Publishing, 2014, 271–282.

[70] H. Bast, D. Delling, A. Goldberg, et al., “Route planning in
transportation networks,” in Algorithm Engineering. Springer
International Publishing, 2016, 19–80.

[71] S. Funke and S. Storandt, “Provable efficiency of contraction
hierarchies with randomized preprocessing,” in Algorithms and
Computation. Springer Berlin Heidelberg, 2015, 479–490.

[72] J. Blum, “Hierarchy of transportation network parameters and
hardness results,” en, in 14th International Symposium on
Parameterized and Exact Computation, Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2019.

[73] B. Haeupler, R. Hladı́k, V. Rozhoň, R. Tarjan, and J. Tětek,
Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps,
Oct. 2024. arXiv: 2311.11793.

[74] D. Delling, M. Holzer, K. Muller, D. Wagner, and F. Schulz,
“High-Performance Multi-Level Graphs,” in The Shortest Path
Problem, American Mathematical Society, 2009, pp. 73–91.

[75] M. Davies, A. Wild, G. Orchard, et al., “Advancing Neuromor-
phic Computing With Loihi: A Survey of Results and Outlook,”
Proceedings of the IEEE, vol. 109, no. 5, May 2021.

[76] J. L. Krichmar, “Path planning using a spiking neuron
algorithm with axonal delays,” in 2016 IEEE Congress on
Evolutionary Computation (CEC), Vancouver, BC, Canada:
IEEE, Jul. 2016, pp. 1219–1226.

[77] J. L. Krichmar, N. A. Ketz, P. K. Pilly, and A. Soltoggio, “Flex-
ible Path Planning in a Spiking Model of Replay and Vicarious
Trial and Error,” in From Animals to Animats 16, L. Cañamero,
P. Gaussier, M. Wilson, S. Boucenna, and N. Cuperlier, Eds.,
ser. Lecture Notes in Computer Science, Cham: Springer
International Publishing, 2022, pp. 177–189.

[78] H. Espino, R. Bain, and J. L. Krichmar, “A rapid adapting
and continual learning spiking neural network path planning
algorithm for mobile robots,” IEEE Robotics and Automation
Letters, vol. 9, no. 11, pp. 9542–9549, 2024.

[79] A. P. Davison, D. Brüderle, J. Eppler, et al., “PyNN: A common
interface for neuronal network simulators,” Front. Neuroinform.,
vol. 2, no. 11, 2009.

[80] M.-O. Gewaltig and M. Diesmann, “Nest (neural simulation
tool),” Scholarpedia, vol. 2, no. 4, p. 1430, 2007.

[81] M. Yao, O. Richter, G. Zhao, et al., “Spike-based dynamic
computing with asynchronous sensing-computing neuromor-
phic chip,” Nature Communications, vol. 15, no. 1, p. 4464,
2024.

[82] A. K. Pandey and S. S. Roy, “Natural language generation
using sequential models: A survey,” Neural Processing Letters,
vol. 55, no. 6, pp. 7709–7742, 2023.

[83] S. Storesund, “Simulating Transition Cell Learning Under the
Transition Scale-Space Model in a Spiking Neural Network,”
M.S. thesis, Norwegian University for Science and Technology,
Trondheim, Norway, 2024, Appendix A.

https://arxiv.org/abs/2311.11793

	Introduction
	Related Work
	Hierarchical Temporal Memory Model
	Neuromorphic Localization and Navigation
	Path Planning and Back-Tracing

	Methodology
	Preliminaries
	Shortest Path Finding in SNNs
	Place Disambiguation in SNNs

	Experimental Results
	Experimental Setup
	Shortest Path Finding in SNNs
	Place Disambiguation in SNNs

	Conclusion and Future Work

